首页> 外文OA文献 >Operation of a homeostatic sleep switch
【2h】

Operation of a homeostatic sleep switch

机译:稳态睡眠开关的操作

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the control of sleep-wake state.
机译:睡眠使动物与外界隔绝,带来的巨大风险和代价必须由重大利益来弥补。要了解这种神秘的益处,将来自于了解睡眠的体内平衡:要监视睡眠需求,内部记账员必须跟踪与睡眠核心功能有关的生理变化。在果蝇中,睡眠稳态机制的关键组成部分是神经元群,它们支配中央复合体的背扇形体(dFB)。这些细胞的人工激活可诱发睡眠,而兴奋性降低会导致失眠。睡眠不足的苍蝇中的dFB神经元倾向于具有电活性,具有较高的输入电阻和较长的膜时间常数,而处于静止状态的苍蝇中的神经元则倾向于无电。因此,相关证据支持一种简单的观点,即稳态睡眠控制通过在活动状态和静止状态之间切换促进睡眠的神经元而起作用。在这里,我们演示了由dFB神经元进行的状态切换,将多巴胺确定为操作该开关的神经调节剂,并描述了该开关机制。引起多巴胺引起数十秒内dFB神经元的瞬时超极化,并在数分钟内持续抑制兴奋性。两种作用都通过Dop1R2受体转导,并通过钾电导介导。转向电静音涉及到Shaker和Shab携带的电压门控A型电流的下调,以及通过我们称为Sandman的两孔域钾离子通道的独立于电压的泄漏电流的上调。桑德曼(Sandman)由CG8713基因编码,并响应多巴胺而转运至质膜。通过减慢处于开启状态的dFB神经元的重复放电或阻止其进入关闭状态,dFB限制了对Shaker或Sandman表达的干扰,分别减少或增加了睡眠。因此,少数神经元的生物物理变化与睡眠觉醒状态的控制有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号